Abstract

UNC-45 is a UCS (UNC-45/CRO1/She4P) class chaperone necessary for myosin folding and/or accumulation, but its requirement for maintaining cardiac contractility has not been explored. Given the prevalence of myosin mutations in eliciting cardiomyopathy, chaperones like UNC-45 are likely to be equally critical in provoking or modulating myosin-associated cardiomyopathy. Here, we used the Drosophila heart model to examine its role in cardiac physiology, in conjunction with RNAi-mediated gene silencing specifically in the heart in vivo. Analysis of cardiac physiology was carried out using high-speed video recording in conjunction with movement analysis algorithms. unc-45 knockdown resulted in severely compromised cardiac function in adults as evidenced by prolonged diastolic and systolic intervals, and increased incidence of arrhythmias and extreme dilation; the latter was accompanied by a significant reduction in muscle contractility. Structural analysis showed reduced myofibrils, myofibrillar disarray, and greatly decreased cardiac myosin accumulation. Cardiac unc-45 silencing also dramatically reduced life-span. In contrast, third instar larval and young pupal hearts showed mild cardiac abnormalities, as severe cardiac defects only developed during metamorphosis. Furthermore, cardiac unc-45 silencing in the adult heart (after metamorphosis) led to less severe phenotypes. This suggests that UNC-45 is mostly required for myosin accumulation/folding during remodeling of the forming adult heart. The cardiac defects, myosin deficit and decreased life-span in flies upon heart-specific unc-45 knockdown were significantly rescued by UNC-45 over-expression. Our results are the first to demonstrate a cardiac-specific requirement of a chaperone in Drosophila, suggestive of a critical role of UNC-45 in cardiomyopathies, including those associated with unfolded proteins in the failing human heart. The dilated cardiomyopathy phenotype associated with UNC-45 deficiency is mimicked by myosin knockdown suggesting that UNC-45 plays a crucial role in stabilizing myosin and possibly preventing human cardiomyopathies associated with functional deficiencies of myosin.

Highlights

  • The myosin superfamily consists of at least 35 classes of actin-based molecular motors

  • Analysis of heart function in 1 week old Hand.UAS-unc-45 RNAi flies revealed severe heart defects compared to controls (Figure 1B, Movie S1): unc-45 KD hearts were significantly dilated in both the conical chamber (CC) and the third abdominal segment heart and exhibited dramatically arrhythmic beating patterns, compared to control hearts

  • This confirms our previous finding that unc-45 null mutants were embryonic lethal and deficient in myosin accumulation [17]

Read more

Summary

Introduction

The myosin superfamily consists of at least 35 classes of actin-based molecular motors. These motors are critical for cellular processes such as cytokinesis, vesicle transport, cell motility, and muscle movement [1]. Chaperones are involved with multiple pathways including myosin folding and are critically required for maintaining cardiac function [11,12,13,14]. A growing body of evidence suggests that folding and stability of myosin is dependent upon UNC-45 levels [15,16,17,18,19,20,21,22]. UNC-45 is present in both invertebrates and vertebrates and is important for myosin maturation, thick filament assembly and muscle function [18,24,25,26]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call