Abstract

The emission maximum of DPN-linked isocitrate dehydrogenase from bovine heart shifted from 316 nm to 324 nm as the excitation wavelength was varied from 265 nm to 300 nm. This shift was accompanied by a nonproportional change in fluorescence intensity. Comparisons of the emission spectra of model compounds in aqueous buffer at pH 7.07 and n-butanol showed that lowered solvent polarity led to a blue shift of the peak of free tryptophan without significant change of fluorescence intensity, whereas the fluorescence intensity of tyrosine amide increased markedly without change in emission maximum. The emission peak of mixtures of tryptophan and tyrosine amide shifted to shorter wavelengths as the proportion of tyrosine amide increased. The results suggest a major contribution of tyrosine to the overall fluorescence of the dehydrogenase. DPNH caused quenching and a blue shift of the protein fluorescence maximum when excited between 270 nm and 290 nm, indicating that the two tryptophan residues per subunit of enzyme are located in different microenvironments of the protein and that DPNH may interact preferentially with the residue emitting at the longer wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.