Abstract
A two-loop calculation in the N = 4 supersymmetric Yang-Mills theory is performed in various dimensions. The theory is found to be two-loop finite in six dimensions or less, but infinite in seven and nine dimensions. The six-dimensional result can be explained by a formulation of the theory in terms of N = 2 superfields. The divergence in seven dimensions is naively compatible with both N = 2 and N = 4 superfield power counting rules, but is of a form that cannot be written as an on-shell N = 4 superfield integral. The hypothesized N = 4 extended superfield formalism therefore either does not exist, or at least has weaker consequences than would have been expected. This leads one to expect that four-dimensional supergravity theories diverge at three loops. Some general issues about the meaning of finiteness in nonrenormalizable theories are discussed. In particular, we discuss the use of field redefinitions, the generalization of wave function renormalizations to nonrenormalizable theories, and whether counterterms should be used in calculations in finite theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.