Abstract
AbstractMembers of the sessile rotifer species Cupelopagis vorax are unusual ambush predators that live permanently attached to submerged freshwater plants. Previous light microscopical research has revealed several uncommon features in this species including a stellate‐patterned integument and an expansive foregut region called the proventriculus. In this study, we apply transmission electron microscopy to explore the ultrastructure of both the integument and foregut to determine how they differ from other rotifers. Our results reveal that the integument is covered by a thick glycocalyx and is patterned with tubercles that originate from the intracytoplasmic lamina (ICL) within the syncytial epidermis. The ICL forms an apical layer within the syncytium, is electron dense and mostly amorphous, and forms tubercles up to 2.3 μm; these tubercles probably account for the patterned appearance of the integument and are similar to what has been found in other gnesiotrochan rotifers. The basal cytoplasm is highly granular and contains two types of membrane‐bound vesicles: large ovoid vesicles (320–411 nm) with amorphous, opaque contents, and secretory bulbs (110–264 nm) with electron‐lucent cores and occasionally electron‐dense contents. Only the secretory bulbs were observed to form connections to the apical plasmalemma, and so are probably exocytotic. Internally, the proventriculus is a large distensible sack that connects the anterior pharyngeal tube to the posterior mastax. The proventricular epithelium is a thin syncytium mostly covered with a dense glycocalyx and a strong brush border of microvilli underlain by a thin terminal web. The cytoplasm contains few organelles and there is no evidence that it is either secretory or has features (e.g., ICL) that might aid in maceration. We hypothesize that the thick glycocalyx might serve a protective function against the movements of live prey and/or against enzymes released from the rotifer's gastric glands that become regurgitated during feeding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.