Abstract

The copepod, Boeckella poppei, is broadly distributed in Antarctic and subantarctic maritime lakes threatened by climate change and anthropogenic chemicals. Unfortunately, comparatively little is known about freshwater zooplankton in lakes influenced by the Southern Ocean. In order to predict the impact of climate change and chemicals on freshwater species like B. poppei, it is necessary to understand the nature of their most resilient life stages. Embryos of B. poppei survive up to two centuries in a resilient dormant state, but no published studies evaluate the encapsulating wall that protects theses embryos or their development after dormancy. This study fills that knowledge gap by using microscopy to examine development and the encapsulating wall in B. poppei embryos from Antarctica. The encapsulating wall of B. poppei is comprised of three layers that appear to be conserved among crustacean zooplankton, but emergence and hatching are uniquely delayed until the nauplius is fully formed in this species. Diapause embryos in Antarctic sediments appear to be in a partially syncytial mid-gastrula stage. The number of nuclei quadruples between the end of diapause and hatching. Approximately 75% of yolk platelets are completely consumed during the same time period. However, some yolk platelets are left completely intact at the time of hatching. Preservation of complete yolk platelets suggests an all-or-none biochemical process for activating yolk consumption that is inactivated during dormancy to preserve yolk for post-dormancy development. The implications of these and additional ultrastructural features are discussed in the context of anthropogenic influence and the natural environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.