Abstract

The termite gut flagellates are of interest because of their unusual motile organelles, their ability to digest cellulose, and their symbiotic relationship with prokaryotes inhabiting the insect gut. This report provides a detailed ultrastructural description of Pyrsonympha from the hind-gut of Reticulitermes flavipes. The motile axostyle is composed of 2,000-4,000 microtubules connected by cross-bridges. At its anterior end, the axostyle is associated with a "primary row" of microtubules which is associated with a fibrous network. The "primary row" is embedded in a large mass of amorphous, electron-dense material occupying the furthest anterior end of the cell. The basal bodies of the eight flagella are also embedded in this presumptive microtubule-organizing center. The flagella are associated with the cell surface throughout their length. Isolation and reactivation of the axostyle has demonstrated that although ATP dependent motility is inherent in the structure of the axostyle, its proper control may be mediated by the attachment of the axostyle to structures at the anterior end of the cell. Pyrsonympha lacks morphologically distinguishable mitochondria and Golgi complexes. The cell surface is covered by unique, previously underscribed, tubular specializations. Symbiotic microorganisms are observed associated with the cell surface and within the cytoplasm. Wood particles are taken up from the gut fluid by large phagocytic vacuoles formed at the posterior end of the cell. Even during the process of breakdown, the wood is always enclosed within the membrane of the phagocytic vacuole. The Pyrsonympha from Reticulitermes flavipes are not attached to the lining of the hind-gut and do not contain an attachment organelle, unlike the Pyrsonympha from other species of Reticulitermes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.