Abstract

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is genetically and clinically distinct from classic spinal muscular atrophy (SMA1). It results from mutations in the gene encoding immunoglobulin mu-binding protein 2 (IGHMBP2) on chromosome 11q13. Patients develop distally pronounced muscular weakness and early involvement of the diaphragm, resulting in respiratory failure. Sensory and autonomic nerves are also affected at later stages of the disease. We investigated peripheral nerves, skeletal muscles and neuromuscular junctions (NMJ) ultrastructurally in five unrelated patients and three siblings with genetically confirmed SMARD1. In mixed motor and sensory nerves we detected Wallerian degeneration and axonal atrophy similar to the ultrastructural findings described in SMA1. Isolated axonal atrophy was evident in purely sensory nerves. All investigated NMJ of patients with SMARD1 were dysmorphic and lacked a terminal axon. Moreover, we also observed characteristics of neuropathies, such as abnormalities in myelination, that have not been described in spinal muscular atrophies so far. Based on these findings we conclude that impairment of IGHMBP2 function leads to axonal degeneration, abnormal myelin formation, and motor end-plate degeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call