Abstract

The small heterotrophic flagellate Ancyromonas (=Planomonas) lacks close relatives in most molecular phylogenies, and it is suspected that it does not belong to any of the recognized eukaryote 'supergroups', making it an organism of great evolutionary interest. Proposed relatives include apusomonads and excavates, but limited understanding of the ancyromonad cytoskeleton has precluded identification of candidate structural homologies. We present a detailed analysis of the ultrastructure of Ancyromonas through computer-based reconstruction of serial sections. We confirm or extend previous observations of its major organelles (mitochondria, Golgi body, extrusomes, etc.) and pellicle, and distinguish a system of stacked endomembranes that may be developmentally connected to the glycocalyx. Ancyromonas has two basal bodies, each with its own flagellar pocket. The anterior basal body associates with two microtubular elements: a doublet root that runs from between the basal bodies to support the cell's rostrum, and a short singlet root. The posterior basal body is associated with two multi-microtubular structures and a singlet root. One multi-microtubular structure, L1, is a conventional microtubular root. The other structure appears as a curved ribbon of ∼8 microtubules near the basal body, but then flares out into two multi-microtubular elements, L2 and L3, plus two single microtubules. The posterior singlet root originates independently near this second complex. L1, the singlet, L2, and L3 all support the posterior flagellar pocket and channel. We also identified several groups of peripheral microtubules. Possible homologies with the flagellar apparatus of both apusomonads and excavates include a splitting root on the right side of the posterior basal body and a singlet root, both supporting a longitudinal channel or groove associated with the posterior flagellum. The anterior flagellar apparatus in each includes a root supporting structures to the left of the anterior flagellum. Given the probable deep divergences of Ancyromonas, apusomonads and excavates within eukaryotes, it is possible that the eukaryotic cenancestor also possessed these features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.