Abstract

Solid waste and heavy metal pollution are long-term and challenging subjects in the field of environmental engineering. In this study, we propose a sustainable approach to “treating waste with waste” by utilizing the ultramicropore biochar derived from solid waste distiller’s grains as a means to remove Cr(VI) from simulated wastewater and wet phosphoric acid. The biochar prepared in this research exhibit extremely high specific surface areas (up to 2973 m2/g) and a well-developed pore structure, resulting in a maximum Cr(VI) adsorption capacity of 426.0 mg/g and over 99% removal efficiency of Cr(VI). Furthermore, the adsorbent can be reused for up to eight cycles without significant reduction in its Cr(VI) adsorption performance. Mechanistic investigations suggest that the exceptional Cr(VI) adsorption capacity can be attributed to the synergistic effect of electrostatic interaction and reduction adsorption. This study offers an alternative approach for the resource utilization of solid waste distiller’s grains, and the prepared biochar holds promise for the removal of Cr(VI) from wastewater and wet-process phosphoric acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.