Abstract

We provide a mathematical description of quantum measurements with a finite exactness. The exactness of a quantum measurement is used as a new metric on the space of quantum states. This metric differs very much from the standard Euclidean metric. This is the so-called ultrametric. We show that a finite exactness of a quantum measurement cannot he described by real numbers. Therefore, we must change the basic number field. There exist nonequivalent ultrametric Hilbert space representations already in the finite-dimensional case (compare with ideas of L. de Broglie). Different preparation procedures could generate nonequivalent representations. The Heisenberg uncertainty principle is a consequence of properties of a preparation procedure. The uncertainty principle “time-energy” is a consequence of the Schrodinger dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.