Abstract

Let K be a complete ultrametric algebraically closed field and let A be the K-Banach algebra of bounded analytic functions in the disk D: |x| < 1. Let Mult(A, ∥ · ∥) be the set of continuous multiplicative semi-norms of A, let Mult m (A, ∥ · ∥) be the subset of the ϕ ∈ Mult(A, ∥ · ∥) whose kernel is a maximal ideal and let Mult a (A, ∥ · ∥) be the subset of the ϕ ∈ Mult m (A, ∥ · ∥) whose kernel is of the form (x − a)A, a ∈ D ( if ϕ ∈ Mult m (A, ∥ · ∥) \ Mult a (A, ∥ · ∥), the kernel of ϕ is then of infinite codimension). We examine whether Mult a (A, ∥ · ∥) is dense inside Mult m (A, ∥ · ∥) with respect to the topology of simple convergence. This a first step to the conjecture of density of Mult a (A, ∥ · ∥) in the whole set Mult(A, ∥ · ∥): this is the corresponding problem to the well-known complex corona problem. We notice that if ϕ ∈ Mult m (A, ∥ · ∥) is defined by an ultrafilter on D, then ϕ lies in the closure of Mult a (A, ∥ · ∥). Particularly, we show that this is case when a maximal ideal is the kernel of a unique ϕ ∈ Multm(A, ∥ · ∥). Particularly, when K is strongly valued all maximal ideals enjoy this property. And we can prove this is also true when K is spherically complete, thanks to the ultrametric holomorphic functional calculus. More generally, we show that if ψ ∈ Mult(A, ∥ · ∥) does not define the Gauss norm on polynomials (∥ · ∥), then it is defined by a circular filter, like on rational functions and analytic elements. As a consequence, if ψ ∈ Multm(A, ∥ · ∥) \ Multa(A, ∥ · ∥) or if φ does not lie in the closure of Mult a (A, ∥ · ∥), then its restriction to polynomials is the Gauss norm. The first situation does happen. The second is unlikely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.