Abstract

All of the extremely large telescopes (ELTs) will utilize sodium laser guide star (LGS) adaptive optics (AO) systems. Most of these telescopes plan to use the Shack-Hartmann approach for wavefront sensing. In these AO systems, the laser spots in subapertures at the edge of the pupil will suffer from spot elongation due to the 10 km extent of the sodium layer and the large separation from the projection laser. This spot elongation will severely degrade the performance of standard geometry wavefront sensing systems. In this paper, we present a CCD with custom pixel morphology that aligns the pixels of each subaperture with the radial extension of the LGS spot. This CCD design will give better performance than a standard geometry CCDs for continuous wave lasers. In addition, this CCD design is optimal for a pulsed sodium laser. The pixel geometry enables each subaperture to follow a laser pulse traversing the sodium layer, providing optimal sampling of a limited number of detected photons. In addition to novel pixel layout, this CCD will also incorporate experimental JFET sense amplifiers and use CMOS design approaches to simplify the routing of biases, clocks and video output. This CCD will attain photon-noise limited performance at high frame rates, and is being incorporated in the plans for the Thirty Meter Telescope (TMT).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.