Abstract

BackgroundBacterial populations are highly successful at colonizing new habitats and adapting to changing environmental conditions, partly due to their capacity to evolve novel virulence and metabolic pathways in response to stress conditions and to shuffle them by horizontal gene transfer (HGT). A common theme in the evolution of new functions consists of gene duplication followed by functional divergence. UlaG, a unique manganese-dependent metallo-β-lactamase (MBL) enzyme involved in L-ascorbate metabolism by commensal and symbiotic enterobacteria, provides a model for the study of the emergence of new catalytic activities from the modification of an ancient fold. Furthermore, UlaG is the founding member of the so-called UlaG-like (UlaGL) protein family, a recently established and poorly characterized family comprising divalent (and perhaps trivalent) metal-binding MBLs that catalyze transformations on phosphorylated sugars and nucleotides.ResultsHere we combined protein structure-guided and sequence-only molecular phylogenetic analyses to dissect the molecular evolution of UlaG and to study its phylogenomic distribution, its relatedness with present-day UlaGL protein sequences and functional conservation. Phylogenetic analyses indicate that UlaGL sequences are present in Bacteria and Archaea, with bona fide orthologs found mainly in mammalian and plant-associated Gram-negative and Gram-positive bacteria. The incongruence between the UlaGL tree and known species trees indicates exchange by HGT and suggests that the UlaGL-encoding genes provided a growth advantage under changing conditions. Our search for more distantly related protein sequences aided by structural homology has uncovered that UlaGL sequences have a common evolutionary origin with present-day RNA processing and metabolizing MBL enzymes widespread in Bacteria, Archaea, and Eukarya. This observation suggests an ancient origin for the UlaGL family within the broader trunk of the MBL superfamily by duplication, neofunctionalization and fixation.ConclusionsOur results suggest that the forerunner of UlaG was present as an RNA metabolizing enzyme in the last common ancestor, and that the modern descendants of that ancestral gene have a wide phylogenetic distribution and functional roles. We propose that the UlaGL family evolved new metabolic roles among bacterial and possibly archeal phyla in the setting of a close association with metazoans, such as in the mammalian gastrointestinal tract or in animal and plant pathogens, as well as in environmental settings. Accordingly, the major evolutionary forces shaping the UlaGL family include vertical inheritance and lineage-specific duplication and acquisition of novel metabolic functions, followed by HGT and numerous lineage-specific gene loss events.

Highlights

  • Bacterial populations are highly successful at colonizing new habitats and adapting to changing environmental conditions, partly due to their capacity to evolve novel virulence and metabolic pathways in response to stress conditions and to shuffle them by horizontal gene transfer (HGT)

  • Phylogenetic analysis Sequence similarity searches with E. coli UlaG primary sequence [Genbank:P39300] against a database of nonredundant protein sequences revealed that proteins with sequence identity greater than 50%, and possibly homologous to UlaG, are present in bacterial genomes belonging to three eubacterial phyla across several classes and families (Figure 2; Additional files 3 and 4)

  • Bacterial lineages containing at least one potential UlaG homolog, or UlaG-like (UlaGL) sequence, include families from the divisions Proteobacteria (Enterobacteriaceae genera Escherichia, Salmonella, Shigella, Citrobacter, Enterobacter, Klebsiella, Yersinia, Providencia, Actinobacillus, Haemophilus, Mannheimia, and Pasteurella; Vibrionales genera Vibrio and Photobacterium); Firmicutes (Clostridiales genus Clostridium; Ruminococcaceae genera Anaerotruncus, Ruminococcus, and Epulopiscium; Lactobacillales genera Enterococcus, Lactobacillus, Leuconostoc, and Streptococcus) and Actinobacteria (Coriobacteriaceae Atopobium). These genera include commensal and symbiotic bacteria, opportunistic pathogens, and pathogenic bacteria that colonize the mammalian gastrointestinal tract (GIT), oral mucosa, genitourinary tract, as well as bacteria found in environmental reservoirs such as soil and water

Read more

Summary

Introduction

Bacterial populations are highly successful at colonizing new habitats and adapting to changing environmental conditions, partly due to their capacity to evolve novel virulence and metabolic pathways in response to stress conditions and to shuffle them by horizontal gene transfer (HGT). Bacteria can evolve complex virulence mechanisms and metabolic pathways by gene duplication and functional divergence of one of the copies [1,2], with the ancestral copy retaining the original function, and by shuffling these entire pathways by horizontal gene transfer (HGT) [3,4]. The prevalence of HGT in bacteria, especially in multi-species ecological communities such as those in the human gastrointestinal tract, plays an essential role in generating genetic variation in addition to gene duplication and gene loss [11]. HGT events are crucial for the dissemination of beneficial functional traits between bacterial communities especially when these are under strong selection pressure, as is the case for virulence factors among pathogenic bacteria [12,13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call