Abstract

Ubiquitin and ubiquitin-like modifiers (UBLs) form covalent complexes with other proteins by isopeptide formation between their carboxyl (C)-termini and epsilon-amino groups of lysine residues of acceptor proteins. A hallmark of UBLs is a protruding C-terminal tail with a terminal glycine residue, which is required for ATP-dependent conjugation. Recently, the highly conserved protein HUB1 (homologous to ubiquitin 1) has been reported to function as a UBL following C-terminal processing. HUB1 exhibits sequence similarity with ubiquitin but lacks a C-terminal tail bearing a glycine residue. Here we show that HUB1 can form SDS-resistant complexes with cellular proteins, but provide evidence that these adducts are not formed through covalent C-terminal conjugation of HUB1 to substrates. The adducts are still formed when the C-terminus of HUB1 was altered by epitope tagging, amino-acid exchange or deletion, or when cells were depleted of ATP. We propose that HUB1 may act as a novel protein modulator through the formation of tight, possibly noncovalent interactions with target proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.