Abstract

Rapid assembly of DNA damage response (DDR) proteins at nuclear “repair” foci is a hallmark response of ionizing radiation (IR)-treated cells. The ubiquitin E3 ligases RNF8 and RNF168 are critical for foci formation, and here we aim to determine their dynamic mobility and abundance at individual foci in living cells. To this end, YFP-tagged RNF8 and RNF168 were expressed at physiological levels in MCF-7 cells, then analyzed by fluorescence recovery after photobleaching (FRAP) assays, nuclear retention measurement, and virus-like particles (VLPs)-based quantification. The results showed that RNF8 and RNF168 were both highly dynamic at IR-induced foci. Intriguingly, RNF8 displayed remarkably faster in vivo association/dissociation rates than RNF168, and RNF8-positive IR-foci were less resistant to detergent extraction. In addition, copy number assay revealed that RNF168 was two-fold more abundant than RNF8 at foci. Collectively, we show for the first time that RNF8 moves on-and-off nuclear DNA repair foci more than six-fold as quickly as RNF168. The faster kinetics of RNF8 recruitment explains why RNF8 is generally observed at DNA-breaks prior to RNF168. Moreover, our finding that RNF8 is less abundant than RNF168 identifies RNF8 as a rate-limiting determinant of focal repair complex assembly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.