Abstract

USP25m is the muscle isoform of the deubiquitinating (DUB) enzyme USP25. Similarly to most DUBs, data on USP25 regulation and substrate recognition is scarce. In silico analysis predicted three ubiquitin binding domains (UBDs) at the N-terminus: one ubiquitin-associated domain (UBA) and two ubiquitin-interacting motifs (UIMs), whereas no clear structural homology at the extended C-terminal region outside the catalytic domains were detected. In order to asses the contribution of the UBDs and the C-terminus to the regulation of USP25m catalytic activity, ubiquitination state and substrate interaction, serial and combinatorial deletions were generated. Our results showed that USP25m catalytic activity did not strictly depend on the UBDs, but required a coiled-coil stretch between amino acids 679 to 769. USP25 oligomerized but this interaction did not require either the UBDs or the C-terminus. Besides, USP25 was monoubiquitinated and able to autodeubiquitinate in a possible loop of autoregulation. UBDs favored the monoubiquitination of USP25m at the preferential site lysine 99 (K99). This residue had been previously shown to be a target for SUMO and this modification inhibited USP25 activity. We showed that mutation of K99 clearly diminished USP25-dependent rescue of the specific substrate MyBPC1 from proteasome degradation, thereby supporting a new mechanistic model, in which USP25m is regulated through alternative conjugation of ubiquitin (activating) or SUMO (inhibiting) to the same lysine residue (K99), which may promote the interaction with distinct intramolecular regulatory domains.

Highlights

  • Ubiquitin (Ub) modifies protein architecture when covalently attached to its substrates

  • It is known that the subsequent events are mediated by ubiquitin receptors, which interact with monoubiquitin and/or polyubiquitin chains through small (20–150 amino acids) Ub-binding domains (UBDs) [11,12]

  • ubiquitin binding domains (UBDs) can modulate the activity of the host protein, as intramolecular interactions between a UBD and a Ub moiety covalently attached to another region of the same protein lead to structural changes that alter the enzymatic activity [11,12]

Read more

Summary

Introduction

Ubiquitin (Ub) modifies protein architecture when covalently attached to its substrates. The intrincate Ub-signalling networks require a tight regulation of both conjugation and deconjugation processes, and the final fate of the modified protein depends on several factors, including the ubiquitin chain length and the configuration of Ub-Ub linkages within the poly-Ub chain [4,5]. Monoubiquitination is not related to proteasome targeting but to modification of enzymatic activity and subcellular localization [6,7]. At least fifteen classes of UBDs have been annotated [13] and this profusion of motifs has launched the study of Ub signalling by: i) providing clues on the roles and modes of action of ubiquitinated substrates, and ii) showing that UBDcontaining proteins interact either with Ub or with a ubiquitinated protein. UBDs can modulate the activity of the host protein, as intramolecular interactions between a UBD and a Ub moiety covalently attached to another region of the same protein lead to structural changes that alter the enzymatic activity [11,12]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call