Abstract

BackgroundManual moulding of cranioplasty implants after craniectomy is feasible, but does not always yield satisfying cosmetic results. In contrast, 3D printing can provide precise templates for intraoperative moulding of polymethylmethacrylate (PMMA) implants in cranioplasty. Here, we present a novel and easily implementable 3D printing workflow to produce patient-specific, sterilisable templates for PMMA implant moulding in cranioplastic neurosurgery.Methods3D printable templates of patients with large skull defects before and after craniectomy were designed virtually from cranial CT scans. Both templates — a mould to reconstruct the outer skull shape and a ring representing the craniectomy defect margins — were printed on a desktop 3D printer with biocompatible photopolymer resins and sterilised after curing. Implant moulding and implantation were then performed intraoperatively using the templates. Clinical and radiological data were retrospectively analysed.ResultsSixteen PMMA implants were performed on 14 consecutive patients within a time span of 10 months. The median defect size was 83.4 cm2 (range 57.8–120.1 cm2). Median age was 51 (range 21–80) years, and median operating time was 82.5 (range 52–152) min. No intraoperative complications occurred; PMMA moulding was uneventful and all implants fitted well into craniectomy defects. Excellent skull reconstruction could be confirmed in all postoperative computed tomography (CT) scans. In three (21.4%) patients with distinct risk factors for postoperative haematoma, revision surgery for epidural haematoma had to be performed. No surgery-related mortality or new and permanent neurologic deficits were recorded.ConclusionOur novel 3D printing-aided moulding workflow for elective cranioplasty with patient-specific PMMA implants proved to be an easily implementable alternative to solely manual implant moulding. The “springform” principle, focusing on reconstruction of the precraniectomy skull shape and perfect closure of the craniectomy defect, was feasible and showed excellent cosmetic results. The proposed method combines the precision and cosmetic advantages of computer-aided design (CAD) implants with the cost-effectiveness of manually moulded PMMA implants.

Highlights

  • Cranioplasty in patients with large skull defects, e.g. after decompressive hemicraniectomy, is regularly performed for mechanical, cosmetic and physiological reasons [7, 17, 29]

  • All materials for cranioplasty have certain advantages and disadvantages: computer-aided design (CAD) implants are expensive and are time consuming to produce because of industrial manufacturing; Autologous implants tend to have higher reoperation rates mainly due to bone resorption, whereas infection rates are lower compared to alloplastic grafts [11, 19, 30, 31]; intraoperative manual modelling of PMMA implants is — in our experience — inferior to autologous implants and CAD implants from a cosmetic standpoint

  • We aimed to develop and clinically implement a 3D printing workflow to produce sterilisable, patient specific, 3D-printed templates for intraoperative manufacturing of cranial PMMA implants within our institution

Read more

Summary

Introduction

Cranioplasty in patients with large skull defects, e.g. after decompressive hemicraniectomy, is regularly performed for mechanical, cosmetic and physiological reasons [7, 17, 29]. We present a novel and implementable 3D printing workflow to produce patient-specific, sterilisable templates for PMMA implant moulding in cranioplastic neurosurgery. Methods 3D printable templates of patients with large skull defects before and after craniectomy were designed virtually from cranial CT scans. Both templates — a mould to reconstruct the outer skull shape and a ring representing the craniectomy defect margins — were printed on a desktop 3D printer with biocompatible photopolymer resins and sterilised after curing. The proposed method combines the precision and cosmetic advantages of computer-aided design (CAD) implants with the cost-effectiveness of manually moulded PMMA implants

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call