Abstract
To speed up multivariate geostatistical simulation it is common to transform the set of attributes into spatially uncorrelated factors that can be simulated independently. Spatial decorrelation methods are usually based on the diagonalisation of the variance/covariance and semivariogram matrices of the set of attributes for a chosen family of lag spacings. These matrices are symmetric and there are several efficient methods for the approximate joint diagonalisation of a family of symmetric matrices. One of these is the uniformly weighted exhaustive diagonalisation with Gauss iterations (U-WEDGE) method. In contrast to the method of minimum/maximum autocorrelation factors (MAF), where a two structure linear model of coregionalisation is assumed, U-WEDGE can be applied directly to the set of experimental semivariogram matrices without having to place restrictions on the number of structures in the linear model of coregionalisation, thus removing one of the restrictions placed on the subsequent modelling of the spatial structure of the factors. We use an iron-ore data set to illustrate the method and present a comparison between the simulated attributes obtained from U-WEDGE and MAF with the full co-simulation of the attributes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.