Abstract

Brassinosteroids (BRs) are a class of steroid hormones with great potential for use in crop improvement. De-repression is usually one of the key events in hormone signaling. However, how the stability of GSK2, the central negative regulator of BR signaling in rice (Oryza sativa), is regulated by BRs remains elusive. Here, we identify the U-box ubiquitin ligase TUD1 as a GSK2-interacting protein by yeast two-hybrid screening. We show that TUD1 is able to directly interact with GSK2 and ubiquitinate the protein. Phenotypes of the tud1 mutant are highly similar to those of plants with constitutively activated GSK2. Consistent with this finding, GSK2 protein accumulates in the tud1 mutant compared with the wild type. In addition, inhibition of BR synthesis promotes GSK2 accumulation and suppresses TUD1 stability. By contrast, BRs can induce GSK2 degradation but promote TUD1 accumulation. Furthermore, the GSK2 degradation process is largely impaired in tud1 in response to BR. In conclusion, our study demonstrates the role of TUD1 in BR-induced GSK2 degradation, thereby advancing our understanding of a critical step in the BR signaling pathway of rice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.