Abstract

B-cell chronic lymphocytic leukemia (B-CLL) is characterized by accumulation of mature monoclonal CD5+ B cells. The disease results mainly from a failure of cells to undergo apoptosis, a process largely influenced by the existence of constitutively activated components of B-cell receptor signaling and the deregulated expression of anti-apoptotic molecules. Recent evidence pointing to a critical role of spleen tyrosine kinase (Syk) in ligand-independent BCR signaling prompted us to examine its role in primary B-CLL cell survival. We demonstrate that pharmacological inhibition of constitutive Syk activity and silencing by siRNA led to a dramatic decrease of cell viability in CLL samples (n=44), regardless of clinical and biological status and induced typical apoptotic cell death with mitochondrial failure followed by caspase 3-dependent cell death. We also provide functional and biochemical evidence that Syk regulated B-CLL cell survival through a novel pathway involving PKCdelta and a proteasome-dependent regulation of the anti-apoptotic protein Mcl-1. Together, our observations are consistent with a model wherein PKCdelta downstream of Syk stabilizes Mcl-1 through inhibitory phosphorylation of GSK3 by Akt. We conclude that Syk constitutes a key regulator of B-CLL cell survival, emphasizing the clinical utility of Syk inhibition in hematopoietic malignancies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.