Abstract

We consider the problem of describing the typical (possibly) non-linear code of minimum distance bounded from below over a large alphabet. We concentrate on block codes with the Hamming metric and on subspace codes with the injection metric. In sharp contrast with the behavior of linear block codes, we show that the typical non-linear code in the Hamming metric of cardinality $q^{n-d+1}$ is far from having minimum distance d, i.e., from being MDS. We also give more precise results about the asymptotic proportion of block codes with good distance properties within the set of codes having a certain cardinality. We then establish the analogous results for subspace codes with the injection metric, showing also an application to the theory of partial spreads in finite geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.