Abstract

The MvaI restriction endonuclease cuts 5′-CC↓AGG-3′/5′-CC↑TGG-3′ sites as indicated by the arrows. N4-methylation of the inner cytosines (Cm4CAGG/Cm4CTGG) protects the site against MvaI cleavage. Here, we show that MvaI nicks the G-strand of the related sequence (CCGGG/CCCGG, BcnI site) if the inner cytosines are C5-methylated: Cm5C↓GGG/CCm5CGG. At M.SssI-methylated SmaI sites, where two oppositely oriented methylated BcnI sites partially overlap, double-nicking leads to double-strand cleavage (CCm5C↓GGG/CCm5C↑GGG) generating fragments with blunt ends. The double-strand cleavage rate and the stringency of substrate site recognition is lower at the methylation-dependent site than at the canonical target site. MvaI is the first restriction endonuclease shown to possess, besides the ‘normal’ activity on its unmethylated recognition site, also a methylation-directed activity on a different sequence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.