Abstract
The string propagation in the two-dimensional stringy black hole is investigated from a new approach. We completely solve the classical and quantum string dynamics in the Lorentzian and Euclidean regimes. In the Lorentzian case all the physics reduces to a massless scalar particle described by a Klein-Gordon type equation with a singular effective potential. The scattering matrix is found and it reproduces the results obtained by coset CFT techniques. It factorizes into two pieces: an elastic Coulombian amplitude and an absorption part. In both parts, an infinite sequence of imaginary poles in the energy appears. The generic features of string propagation in curved D-dimensional backgrounds (string stretching, fall into space-time singularities) are analyzed in the present case. A new physical phenomenon specific to the present black hole is found: the quantum renormalization of the speed of light. We find that where k is the integer in front of the WZW action. Only for k→∞ does this new effect disappear (although the conformal anomaly is present). We analyze all the classical Euclidean string solutions and exactly compute the quantum partition function. No critical Hagedorn temperature appears here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.