Abstract

Motivated by neutron scattering experiments in high-Tc cuprates, we propose the two-component spin–fermion model as a minimal phenomenological model, which has both local spins and itinerant fermions as independent degrees of freedom (d.o.f.). Our calculations of the dynamic spin correlation function provide a successful description of the puzzling neutron experiment data and show that: (i) the upward dispersion branch of magnetic excitations is mostly due to local spin excitations; (ii) the downward dispersion branch is from collective particle–hole excitations of fermions; and (iii) the resonance mode is a mixture of both d.o.f. Using the same model with the same set of parameters, we calculated the renormalized quasiparticle (q.p.) dispersion and successfully reproduced one of the key features of the angle-resolved photoemission spectroscopy (ARPES) experiments, namely the high-energy kink structure in the fermion q.p. dispersion, thus supporting the two-component spin–fermion phenomenology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.