Abstract

ABSTRACTHydrogenated amorphous silicon (a-Si:H) films which were deposited by plasma enhanced chemical vapor deposition (PECVD) have been recrystallized by the two-step rapid thermal annealing (RTA) employing the halogen lamp. The a-Si:H films evolve hydrogen explosively during the high temperature crystallization step. In result, the recrystallized polycrystalline silicon (poly-Si) films have poor surface morphology. In order to avoid the hydrogen evolution, the films have undergone the dehydrogenation step prior to the crystallization step.Before the RTA process, the active area of thin film transistors (TFT's) was patterned. The prepatterning of the a-Si:H active islands may reduce the thermal damage to the glass substrate during the recrystallization. The computer generated simulation shows the heat propagation from the a-Si:H islands into the glass substrate. We have fabricated the poly-Si TFT's on silicon wafers. The maximum ON/OFF current ratio of the devices was over 10.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.