Abstract

The laws governing life should be as simple as possible; however, theoretical investigations into allometric laws have become increasingly complex, with the long-standing debate over the scaling exponent in allometric laws persisting. This paper re-examines the same biological phenomenon using two different scales. On a macroscopic scale, a cell surface appears smooth, but on a smaller scale, it exhibits a fractal-like porous structure. To elaborate, a few examples are given. Employing the two-scale fractal theory, we theoretically predict and experimentally verify the scaling exponent values for basal, active, and maximal metabolic rates. This paper concludes that Rubner’s 2/3 law and Kleiber’s 3/4 law are two facets of the same truth, manifested across different scale approximations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.