Abstract

A modelling approach of gas solid flow, considering different physical phenomenon such as fluid turbulence, particle turbulence and interparticle collision effects are presented. The approach is based on the two‐fluid model formulation where both phases are treated as continuum. This implies that the gas phase as well as the particle phase are weighted by their separate volumetric fractions. According to the experimental results and numerical simulations, the inter‐particle collision possesses a significant influence of turbulence level on particle transport properties in gas solid turbulent flow even for dispersed phase volume fraction (α<0.01). Comparisons in predictions have been depicted with inclusion of interparticle collision effect in the equation of particle turbulent kinetic energy and with exclusion of this effect. Experimental research has been conducted in a thermal power plant depicting higher erosion resistance of noncircular square sectioned coal pipe bends in comparison with those with circular cross section, the salient features of the experimental work are presented in this paper. Experiments have been conducted to determine, pressure drop in straight and curved portions of conduits conveying air coal mixtures in a thermal power plant. Validation of this experimental data with numerical predictions have been presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.