Abstract
We have estimated the second-order response properties of complex cells in two spatial dimensions by cross-correlating their spike trains with a binary approximation of a Gaussian white noise stimulus ensemble. Wiener-like kernels were computed and generally consisted of two or three parallel, elongated subrogions alternating between augmented and suppressed response. These submits were scattered across the receptive fields of complex cells and their axes of elongation agreed with the optimal orientation determined with drifting gratings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.