Abstract

This paper studies a shape optimization problem which reduces to a nonlocal free boundary problem involving perimeter. It is motivated by a study of liquid crystal droplets with a tangential anchoring boundary condition and a volume constraint. We establish in 2D the existence of an optimal shape that has two cusps on the boundary. We also prove that the boundary of the droplet is a chord–arc curve with its normal vector field in the VMO space, and its arc-length parameterization belongs to the Sobolev space $$H^{3/2}$$ . In fact, the boundary curves of such droplets closely resemble the so-called Weil–Petersson class of planar curves. In addition, the asymptotic behavior of the optimal shape when the volume becomes extremely large or small is studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call