Abstract

We investigate the Bose glass phase and the insulator-to-superfluid transition in the two-dimensional disordered Boson Hubbard model in the Villain representation via Monte Carlo simulations. In the Bose glass phase the probability distribution of the local susceptibility is found to have a 1 χ 2 tail and the imaginary time Green's function decays algebraically C( τ) ≈ τ −1 giving rise to a divergent global susceptibility. By considering the participation ratio it is shown that the excitations in the Bose glass phase are fully localized and a scaling law is established. For commensurate Boson densities we find direct Mott insulator to superfluid transition without an intervening Bose glass phase for weak disorder. For this transition we obtain the critical exponents z = 1, v = 0.7 ± 0.1 and η = 0.1 ± 0.1, which agree with those for the classical three-dimensional XY model without disorder. This indicates that disorder is irrelevant at the tip of the Mott-lobes and that here the inequality v⩾2 d is violated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call