Abstract

The two-dimensional (2D) Co oxide monolayer phase with (9 × 2) structure on Pd(100) has been investigated experimentally by scanning tunneling microscopy (STM) and theoretically by density functional theory (DFT). The high-resolution STM images reveal a complex pattern which on the basis of DFT calculations is interpreted in terms of a coincidence lattice, consisting of a CoO(111)-type bilayer with significant symmetry relaxation and height modulations to reduce the polarity in the overlayer. The most stable structure displays an unusual zig-zag type of antiferromagnetic ordering. The (9 × 2) Co oxide monolayer is energetically almost degenerate with the c(4 × 2) monolayer phase, which is derived from a single CoO(100)-type layer with a Co(3)O(4) vacancy structure. Under specific preparation conditions, the (9 × 2) and c(4 × 2) structures can be observed in coexistence on the Pd(100) surface and the two phases are separated by a smooth interfacial boundary line, which has been analyzed at the atomic level by STM and DFT. The here described 2D Co oxide nanolayer systems are characterized by a delicate interplay of chemical, electronic, and interfacial strain interactions and the associated complexities in the theoretical description are emphasized and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call