Abstract

A popular classroom demonstration is revisited in which a light ball and a much larger heavier ball are vertically aligned and dropped together onto a hard surface. Careful experimental data obtained using a high-speed camera is compared to a lumped-mass Newtonian restitution model. Good macroscopic agreement is found, provided there is sufficient separation between the two balls as they are dropped. An alternative continuum model based on elastic membrane theory is developed to explain the limit in which the balls are initially touching. The model assumes the lower ball deforms to a truncated sphere upon its impact with the floor, exciting an elastic wave which subsequently launches the upper ball like a particle on a trampoline, before the lower ball leaves the ground. A favourable comparison with experimental data is found for the case of negligible initial separation between the balls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.