Abstract

Let M be a finitely generated metabelian group explicitly presented in a variety $ {\mathcal{A}}^2 $ of all metabelian groups. An algorithm is constructed which, for every endomorphism φ ∈ End(M) identical modulo an Abelian normal subgroup N containing the derived subgroup M′ and for any pair of elements u, v ∈ M, decides if an equation of the form (xφ)u = vx has a solution in M. Thus, it is shown that the title problem under the assumptions made is algorithmically decidable. Moreover, the twisted conjugacy problem in any polycyclic metabelian group M is decidable for an arbitrary endomorphism φ ∈ End(M).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.