Abstract

ABSTRACT Background Achromobacter xylosoxidans is an emerging pathogen that causes airway infections in patients with cystic fibrosis. Knowledge of virulence factors and protein secretion systems in this bacterium is limited. Twin arginine translocation (Tat) is a protein secretion system that transports folded proteins across the inner cell membranes of gram-negative bacteria. Tat has been shown to be important for virulence and cellular processes in many different bacterial species. This study aimed to investigate the role of Tat in iron metabolism and host cell adhesion in A. xylosoxidans. Methods Putative Tat substrates in A. xylosoxidans were identified using the TatFind, TatP, and PRED-Tat prediction tools. An isogenic tatC deletion mutant (ΔtatC) was generated and phenotypically characterized. The wild-type and ΔtatC A. xylosoxidans were fractionated into cytosolic, membrane, and periplasmic fractions, and the expressed proteome of the different fractions was analyzed using liquid chromatography-mass spectrometry (LC-MS/MS). Results A total of 128 putative Tat substrates were identified in the A. xylosoxidans proteome. The ΔtatC mutant showed attenuated host cell adhesion, growth rate, and iron acquisition. Twenty predicted Tat substrates were identified as expressed proteins in the periplasmic compartment, nine of which were associated with the wild type. Conclusion The data indicate that Tat secretion is important for iron acquisition and host cell adhesion in A. xylosoxidans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.