Abstract

AbstractPolynomial graph invariants have been confirmed to have important applications in quantum chemistry and biological information. One of the famous polynomial graph invariants is the Tutte polynomial which gives abundant graph‐theoretical information of the underlying graph. In this paper, we first give a simpler and more efficient method to get the Tutte polynomials of alternating polycyclic chains. Then we obtain the explicit expressions for the Tutte polynomials and the number of spanning trees of phenylene systems with given number of branching hexagons. Moreover, we determine the extremal values of the number of spanning trees among the phenylene systems with given one branching hexagon and two branching hexagons. The corresponding extremal phenylene systems are characterized, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.