Abstract
The 'dollar game' represents a kind of diffusion process on a graph. Under the rules of the game some cofigurations are both stable and recurrent, and these are known as critical cofigurations. The set of critical configurations can be given the structure of an abelian group, and it turns out that the order of the group is the tree-number of the graph. Each critical configuration can be assigned a positive weight, and the generating function that enumerates critical configurations according to weight is a partial evaluation of the Tutte polynomial of the graph. It is shown that the weight enumerator can also be interpreted as a growth function, which leads to the conclusion that the (partial) Tutte polynomial itself is a growth function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.