Abstract
Random fields on the sphere play a fundamental role in the natural sciences. This paper presents a simulation algorithm parenthetical to the spectral turning bands method used in Euclidean spaces, for simulating scalar- or vector-valued Gaussian random fields on the d-dimensional unit sphere. The simulated random field is obtained by a sum of Gegenbauer waves, each of which is variable along a randomly oriented arc and constant along the parallels orthogonal to the arc. Convergence criteria based on the Berry-Esseen inequality are proposed to choose suitable parameters for the implementation of the algorithm, which is illustrated through numerical experiments. A by-product of this work is a closed-form expression of the Schoenberg coefficients associated with the Chentsov and exponential covariance models on spheres of dimensions greater than or equal to 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.