Abstract

Abstract The Turán density of an $r$-uniform hypergraph ${\mathcal {H}}$, denoted $\pi ({\mathcal {H}})$, is the limit of the maximum density of an $n$-vertex $r$-uniform hypergraph not containing a copy of ${\mathcal {H}}$, as $n \to \infty $. Denote by ${\mathcal {C}}_{\ell }$ the $3$-uniform tight cycle on $\ell $ vertices. Mubayi and Rödl gave an “iterated blow-up” construction showing that the Turán density of ${\mathcal {C}}_{5}$ is at least $2\sqrt {3} - 3 \approx 0.464$, and this bound is conjectured to be tight. Their construction also does not contain ${\mathcal {C}}_{\ell }$ for larger $\ell $ not divisible by $3$, which suggests that it might be the extremal construction for these hypergraphs as well. Here, we determine the Turán density of ${\mathcal {C}}_{\ell }$ for all large $\ell $ not divisible by $3$, showing that indeed $\pi ({\mathcal {C}}_{\ell }) = 2\sqrt {3} - 3$. To our knowledge, this is the first example of a Turán density being determined where the extremal construction is an iterated blow-up construction. A key component in our proof, which may be of independent interest, is a $3$-uniform analogue of the statement “a graph is bipartite if and only if it does not contain an odd cycle”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call