Abstract
Layered structure oxides have emerged as highly promising cathode materials for lithium-ion batteries. In these cathode materials, volume variation related to anisotropic lattice strain during Li + insertion/extraction, however, can induce critical structural instability and electrochemical degradation upon cycling. Despite extensive research efforts, solving the issues of lattice strain and mechanical fatigue remains a challenge. This perspective aims to establish the “structure–property relationship” between the degradation mechanism of the layered oxide cathode due to lattice strain and the structural evolution during cycling. By addressing these issues, we aim to guide the improvement of electrochemical performance, thereby facilitating the widespread adoption of these materials in future high-energy density lithium-ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.