Abstract

The role of motor uncertainty in discrete or static space tasks, such as pointing tasks, has been investigated in many experiments. These studies have shown that humans hold an internal representation of intrinsic and extrinsic motor uncertainty and compensate for this variability when planning movement. The aim of this study was to investigate how humans respond to uncertainties during movement execution in a dynamic environment despite indeterminate knowledge of the outcome of actions. Additionally, the role of errors, or lack thereof, in predicting risk was examined. In the experiment, subjects completed a driving simulation game on a two-lane road. The road contained random curves so that subjects were forced to use sensory feedback to complete the task and could not rely only on motor planning. Risk was manipulated by using horizontal perturbations to create the illusion of driving on a bumpy road, thereby imposing motor uncertainty, and altering the cost function of the road. Results suggest continual responsiveness to cost and uncertainty in a dynamic task and provide evidence that subjects avoid risk even in the absence of errors. The results suggest that humans tune their statistical motor behavior based on cost, taking into account probabilities of possible outcomes in response to environmental uncertainty.

Highlights

  • Humans live in an environment that is constantly risky

  • Authorization for analysis, storage, and publication of protected health information was obtained according to the Health Information Portability and Accountability Act (HIPAA)

  • It has been previously suggested that humans act as Bayes optimal observers in motor planning tasks, such as rapid pointing, by modifying behavior to compensate for uncertainty [11,12,13,14,15,16,17]

Read more

Summary

Introduction

Humans live in an environment that is constantly risky. A high cost of failure but low probability is not generally considered risky (standing several meters away from the edge of a cliff). A high probability of failure but low cost is not regarded as risky (standing on the edge of a step). It is only where high likelihood of failure converges with high cost, when we stand on the edge of the cliff, that we venture into high risk. Trommershauser and colleagues [2] have demonstrated that humans are able to maximize expected gain by using internal representations of the magnitude of outcome uncertainty.

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.