Abstract

The optical magneto-electric (OME) effect has been widely investigated in magnetic materials, but obtaining the large and tunable OME effect is an ongoing challenge. We here design a tri-color superlattice composed of manganese oxides, Pr0.9Ca0.1MnO3, La0.9Sr0.1MnO3, and La0.9Sb0.1MnO3, where the space-inversion and time-reversal symmetries are broken. With the aid of the grating structure, the OME effect for near-infrared light in tri-color superlattices is investigated systematically through the Bragg diffraction method. The relative change of diffracted light intensity of the order n = ±1 has a strong dependence on the magnetization and polarization of the tri-color superlattice, whether the superlattice is irradiated in reflection or transmission geometries. Otherwise, the relative change of diffracted light intensity increases with the increase in the superlattice period and with the decrease in the grating period. The maximum relative change of diffracted light intensity in tri-color superlattices with the grating structure patterned is as large as 8.27%. These results pave the way for designing next-generation OME devices based on manganese oxides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.