Abstract

We examine in this paper a stellar mass selected sample of galaxies at 1 < z < 3 within the Hubble Ultra Deep Field, utilising WFC3 imaging to study the rest-frame optical morphological distribution of galaxies at this epoch. We measure how apparent morphologies (disk, elliptical, peculiar) correlate with physical properties, such as quantitative structure and spectral-types. One primary result is that apparent morphology does not correlate strongly with stellar populations, nor with galaxy structure at this epoch, suggesting a chaotic formation history for Hubble types at z > 1. By using a locally defined definition of disk and elliptical galaxies based on structure and spectral-type, we find no true ellipticals at z > 2, and a fraction of 3.2+/-2.3% at 1.5 < z < 2. Local counterparts of disk galaxies are at a similar level of 7-10%, much lower than the 75% fraction at lower redshifts. We further compare WFC3 images with the rest-frame UV view of galaxies from ACS imaging, showing that galaxies imaged with ACS that appear peculiar often contain an `elliptical' like morphology in WFC3. We show through several simulations that this larger fraction of elliptical-like galaxies is partially due to the courser PSF of WFC3, and that the `elliptical' class very likely includes early-type disks. We also measure the merger history for our sample using CAS parameters, finding a redshift evolution increasing with redshift, and a peak merger fraction of ~30% at z~2 for the most massive galaxies with M_*> 10^{10} M_sol, consistent with previous results from ACS and NICMOS. We compare our results to semi-analytical model results and find a relatively good agreement between our morphological break-down and the predictions. Finally, we argue that the peculiars, ellipticals and peculiar ellipticals have similar properties, suggesting similar formation modes, likely driven by major mergers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.