Abstract

c-myc promoter silencing is a key step in epithelial cell growth inhibition by transforming growth factor beta (TGFbeta). During carcinogenesis, however, epithelial cells escape from c-myc repression and consequently become refractory to TGFbeta-mediated antiproliferation. Here, we assessed the role of the repressor, KLF11, in TGFbeta-induced growth inhibition in normal epithelial as well as pancreatic carcinoma cells. Endogenous KLF11 was stably down-regulated by RNA interference technology, and the functional consequences were studied by proliferation assays, reporter assays, DNA binding studies, and expression analyses. Coimmunoprecipitation and glutathione S-transferase pulldown assays were conducted to define KLF11-Smad3 interaction and U0126 was administered to examine the effects of the extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase on complex formation and c-myc promoter binding of KLF11 and Smad3 in pancreatic cancer cells. In TGFbeta-stimulated normal epithelial cells, nuclear KLF11, in concert with Smad3, binds to and represses transcription from the core region of the TGFbeta-inhibitory element (TIE) of the c-myc promoter. Disruption of KLF11-Smad3 interaction or small interfering RNA-mediated knockdown of endogenous KLF11 strongly diminishes Smad3-TIE promoter binding and repression, and consequently impairs TGFbeta-mediated growth inhibition. In pancreatic cancer cells with oncogenic Ras mutations, hyperactive ERK counteracts TGFbeta-induced c-myc repression and growth inhibition through at least two mechanisms, i.e., via disruption of KLF11-Smad3 complex formation and through inhibition of KLF11-Smad3 binding to the TIE element. Together, these results suggest a central role for KLF11 in TGFbeta-induced c-myc repression and antiproliferation and identifies a novel mechanism through which ERK signaling antagonizes the tumor suppressor activities of TGFbeta in pancreatic cancer cells with oncogenic Ras mutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.