Abstract
Although EGFR activation is a hallmark of glioblastoma (GBM), anti-EGFR therapy has so far not yielded the desired effects. Targeting PI3K/Akt has been proposed as a strategy to increase the cellular sensitivity to EGFR inhibitors. Here we evaluated the contribution of FOXO3a, a key Akt target, in the response of GBM cells to EGFR inhibition. FOXO3a activation was assessed by immunofluorescence and gene reporter assays, and by evaluating target gene expression using Western blotting and qRT-PCR. Cellular effects were evaluated using cell viability and apoptosis assays, i.e., Annexin V/PI staining and caspase 3/7 activity measurements. Drug synergism was evaluated by performing isobolographic analyses. Gene silencing experiments were performed using stable shRNA transfections. We found that EGFR inhibition in GBM cells led to FOXO3a activation and to transcriptional modulation of its key targets, including repression of the oncogene FOXM1. In addition, we found that specific FOXO3a activation recapitulated the molecular effects of EGFR inhibition, and that the FOXO3a activator trifluoperazine, a FDA-approved antipsychotic agent, reduced GBM cell growth. Subsequent isobolographic analyses of combination experiments indicated that trifluoperazine and erlotinib cooperated synergistically and that their concomitant treatment induced a robust activation of FOXO3a, leading to apoptosis in GBM cells. Using gene silencing, we found that FOXO3a is essential for the response of GBM cells to EGFR inhibition. Our data indicate that FOXO3a activation is a crucial event in the response of GBM cells to EGFR inhibition, suggesting that FOXO3a may serve as an actionable therapeutic target that can be modulated using FDA-approved drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Cellular Oncology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.