Abstract

The innate immune system is the first line of defense against invading organisms, and TLRs are the main sensors of microbial components, initiating signaling pathways that induce the production of proinflammatory cytokines and type I IFNs. An antiviral action for the tumor suppressor alternative reading frame (ARF) has been reported; however, the precise role of ARF in innate immunity is unknown. In this study, we show that ARF plays an important role in regulation of inflammatory responses. In peritoneal macrophages and bone marrow-derived macrophages from ARF-deficient animals, the induction of proinflammatory cytokines and chemokines by TLR ligands was severely impaired. The altered responses of ARF(-/-) cells to TLR ligands result from aberrant activation of intracellular signaling molecules including MAPKs, IκBα degradation, and NF-κB activation. Additionally, animals lacking ARF were resistant to LPS-induced endotoxic shock. This impaired activation of inflammation in ARF(-/-) mice was not restricted to TLRs, as it was also shown in response to non-TLR signaling pathways. Thus, ARF(-/-) mice were also unable to trigger a proper inflammatory response in experimental peritonitis or in 12-O-tetradecanoylphorbol-13-acetate-induced edema. Overexpression of ARF, but not its downstream target p53, rescued the ARF-deficient phenotype, increasing TLR4 levels and restoring inflammatory reaction. An increase in the E2F1 protein levels observed in ARF(-/-) macrophages at basal condition and after LPS stimulation may be involved in the impaired response in this system, as E2F1 has been described as an inflammatory suppressor. These results indicate that tumor suppressor ARF is a new regulator of inflammatory cell signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call