Abstract

Connexin43 (Cx43) is known to have tumor-suppressive effects, but the underlying mechanisms are still poorly understood. In keratinocytes, we previously showed that the COOH-terminal domain of Cx43 directly interacts with the tumor suppressor Cav-1. We now show that rat epidermal keratinocytes (REK) that are reduced in Cx43 present features of epithelial-to-mesenchymal transition and are more invasive than their control counterparts, whereas overexpression of Cx43 inhibited the 12-O-tetradecanoyl-phorbol-13-acetate (TPA)- and epidermal growth factor (EGF)-induced invasive properties. Carbenoxolone did not alter the inhibitory effect of Cx43 against TPA- and EGF-induced cell invasion, indicating the involvement of a gap junctional intercellular communication-independent mechanism. Interestingly, the association of Cx43 with Cav-1 was found to be reduced after TPA and EGF treatment. Accordingly, the colocalization of Cx43 with Cav-1 was diminished in cells from a human epidermal squamous cell carcinoma, as well as in sections from human keratinocyte tumors, suggesting that Cx43/Cav-1 interaction plays a protective role against keratinocyte transformation. As opposed to cells that overexpress Cx43-GFP, invasion could be induced in rat epidermal keratinocytes that overexpressed a GFP-tagged truncated mutant of Cx43 (Delta244-GFP) that we previously showed not to interact with Cav-1, as well as in cells that overexpressed Cx43-GFP but were reduced in Cav-1. Our data show that Cx43 possesses tumor-suppressive properties in keratinocytes and provide the first evidence that the Cx43/Cav-1 interaction is altered in keratinocyte transformation processes, as well as in human keratinocyte tumors, and that this association might play a role in Cx43-mediated tumor suppression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call