Abstract

The tubby mouse shows a tripartite syndrome characterized by maturity-onset obesity, blindness and deafness. The causative gene Tub is the founding member of a family of related proteins present throughout the animal and plant kingdoms, each characterized by a signature carboxy-terminal tubby domain. This domain consists of a β barrel enclosing a central α helix and binds selectively to specific membrane phosphoinositides. The vertebrate family of tubby-like proteins (TULPs) includes the founding member TUB and the related TULPs, TULP1 to TULP4. Tulp1 is expressed in the retina and mutations in TULP1 cause retinitis pigmentosa in humans; Tulp3 is expressed ubiquitously in the mouse embryo and is important in sonic hedgehog (Shh)-mediated dorso-ventral patterning of the spinal cord. The amino terminus of these proteins is diverse and directs distinct functions. In the best-characterized example, the TULP3 amino terminus binds to the IFT-A complex, a complex important in intraflagellar transport in the primary cilia, through a short conserved domain. Thus, the tubby family proteins seem to serve as bipartite bridges through their phosphoinositide-binding tubby and unique amino-terminal functional domains, coordinating multiple signaling pathways, including ciliary G-protein-coupled receptor trafficking and Shh signaling. Molecular studies on this functionally diverse protein family are beginning to provide us with remarkable insights into the tubby-mouse syndrome and other related diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.