Abstract
ABSTRACT This paper aims to consider stochastic differential equations with piecewise continuous arguments (SDEPCAs) driven by Lévy noise where both drift and diffusion coefficients satisfy local Lipschitz condition plus Khasminskii-type condition and the jump coefficient grows linearly. We present the explicit truncated Euler–Maruyama method. We study its moment boundedness and its strong convergence. Moreover, the convergence rate is shown to be close to that of the classical Euler method under additional conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.