Abstract

In this paper, we introduce the $k\times n$ (with $k\leq n$) truncated, supplemented Pascal matrix which has the property that any $k$ columns form a linearly independent set. This property is also present in Reed-Solomon codes; however, Reed-Solomon codes are completely dense, whereas the truncated, supplemented Pascal matrix has multiple zeros. If the maximal-distance separable code conjecture is correct, then our matrix has the maximal number of columns (with the aformentioned property) that the conjecture allows. This matrix has applications in coding, network coding, and matroid theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.