Abstract

The true self-avoiding walk with bond repulsion is a nearest neighbor random walk on $\mathbb{Z}$, for which the probability of jumping along a bond of the lattice is proportional to $\exp(-g \cdot$ number of previous jumps along that bond). First we prove a limit theorem for the distribution of the local time process of this walk. Using this result, later we prove a local limit theorem, as $A \rightarrow \infty$, for the distribution of $A^{-2/3}X_{\theta_{s/A}}$, where $\theta_{s/A}$ is a random time distributed geometrically with mean $e^{-s/A}(1 - e^{-s/A})^{-1} = A/s + O(1)$. As a by-product we also obtain an apparently new identity related to Brownian excursions and Bessel bridges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call